Tymczasem doradca prezydenta Stanów Zjednoczonych ds. bezpieczeństwa narodowego Jacob J. Sullivan 15 lutego spotkał się z Turnerem i innymi kongresmanami zajmującymi się kwestiami bezpieczeństwa i obrony. Wyraził zdziwienie tym, że Turner wypowiedział się publicznie jeszcze przed tym, zaplanowanym wcześniej spotkaniem. Dwa źródła zaznajomione z obradami na Kapitolu stwierdziły w rozmowie z ABC News, że ostrzeżenie rzeczywiście ma związek z planami Rosjan wystrzelenia broni nuklearnej w przestrzeń kosmiczną. Podkreśliły jednak, że nie chodzi o zrzucenie broni nuklearnej na Ziemię, a raczej o jej ewentualne użycie przeciwko satelitom.
W odpowiedzi na publikacje mediów prezydent Joseph R. Biden Jr. potwierdził, że Rosja opracowuje broń przeciwsatelitarną, o czym USA wiedzą od kilku lat, ale w jego ocenie nie zdecyduje się na jej umieszczenie w kosmosie. Podkreślił, że nie stanowi ona zagrożenia dla życia ludzkiego. Równocześnie rzecznik Kremla Dmitrij Pieskow zasugerował, że doniesienia w tej sprawie mają stanowić sztuczkę Białego Domu, której celem jest przekonanie Kongresu do przegłosowania kolejnego pakietu pomocy finansowej dla Ukrainy. A zatem – czy takie zagrożenie rzeczywiście istnieje?
Przede wszystkim musimy sobie uświadomić, czym eksplozja nuklearna w kosmosie, a ściślej mówiąc w jonosferze, różni się od nadziemnej, czy podziemnej (podwodnej). Wybuch jądrowy prowadzi do wydzielenia olbrzymich ilości energii, w bardzo krótkim czasie, rzędu 10−6s, w niewielkiej objętości materii. W jego wyniku produkty rozszczepienia, obudowa wraz z innymi częściami broni oraz otaczające powietrze ogrzane zostają do temperatury kilku milionów stopni Celsjusza.
Tak wysoka temperatura powoduje, że w czasie wybuchu w fazę gazową przechodzą wszystkie materiały. Powstaje wówczas ogromne ciśnienie rzędu kilku miliardów atmosfer. Spowodowane jest to tym, że początkowa objętość powstających w czasie wybuchu gazów ograniczona jest przez rozmiary bomby. W pierwszej fazie po eksplozji dochodzi do powstania ognistej kuli gazów, której temperatura jest bardzo wysoka i ciśnienie jest ogromne. Taka kula rozszerza się w bardzo krótkim czasie, jednocześnie zmniejsza się jej temperatura i ciśnienie, przez co obniża się również jasność świecenia.
Ognista kula składa się z radioaktywnych produktów rozszczepienia uranu lub plutonu, a także różnych składników bomby. Około 50% uwolnionej energii powoduje powstanie fali uderzeniowej, która powoduje zniszczenie obiektów znajdujących się w zasięgu wybuchu. Około 30% zmienia się w promieniowanie świetlne, a pozostałe 10% w promieniowanie jonizujące. Sytuacja zmienia się, gdy ośrodkiem eksplozji jest próżnia. Ze względu na małą ilość materii (w praktyce sama masa bomby) oraz brak powietrza, fala uderzeniowa jest znikoma, natomiast pojawia się inne zagrożenie, mianowicie impuls elektromagnetyczny (EMP – electromagnetic pulse).
Składa się on z kilku faz. W ciągu pierwszych kilku dziesiątych nanosekundy około 0,1% energii eksplozji powstaje jako promieniowanie gamma o energii 1-3 MeV. Promienie gamma przenikają przez atmosferę i zderzają się z cząsteczkami powietrza, tworząc ogromne ilości jonów dodatnich i elektronów odrzutu (znanych również jako elektrony Comptona) o energii MeV, które następnie przyspieszają i poruszają się spiralnie wzdłuż linii pola magnetycznego Ziemi.
Powstałe przejściowe pola elektryczne i powstające prądy generują emisje elektromagnetyczne w zakresie częstotliwości radiowych od 15 MHz do 250 MHz. To zjawisko EMP występujące na wysokości od 30 do 50 km nad powierzchnią Ziemi. Jeżeli w obrębie działania tego pola znajdzie się jakikolwiek obwód elektroniczny bądź elektryczny, np. linia przesyłowa, telefoniczna, domowa instalacja elektryczna, antena telewizyjna itp. to w obwodzie tym zostanie wyindukowane napięcie o wartości przekraczającej wartość dopuszczalną, wskutek czego te instalacje i urządzenia podłączone do nich mogą ulec uszkodzeniu.
Co więcej, w wyniku tzw. efektu Christofilosa, spora część elektronów zostanie uwięziona w ziemskim polu magnetycznym i utworzy dodatkowy pas promieniowania uwięzionego, na wzór pasów Van Allena. Nicholas Christofilos zasugerował, że efekt ten może mieć potencjał obronny w przypadku wojny nuklearnej, jeśli w odpowiednim miejscu zostanie uwięzionych tak wiele elektronów, że głowice bojowe przelatujące przez ten region byłyby narażone na ogromne prądy elektryczne, które zniszczyłyby ich elektronikę, ponadto degradacji uległyby transmisje radiowe i radarowe.
Pierwsze detonacje bomb nuklearnych w kosmosie były wykonane już w latach 1958-62. Jako pierwsi testowanie tego typu broni rozpoczęli Amerykanie. W pierwszej fazie, nazwanej Hardtack I lub Operation Newsreel, wykonano trzy testy, odpowiednio na wysokości 26 km, 77 km (inne źródła podają 81 km) i 34 km. W zasadzie tylko drugi, o nazwie Teak, można zaliczyć jako test kosmiczny.
Wykonano go 1 sierpnia 1958 r. na atolu Johnstona przy użyciu rakiety Redstone i głowicy W-39 o ekwiwalencie 3,8 Mt TNT. Niestety złe zaprogramowanie rakiety spowodowało wybuch bezpośrednio nad miejscem startu, gdzie nie sięgała aparatura pomiarowa, stwierdzono jedynie zakłócenia łączności radiowej w wyniku samego wybuchu. Kolejna seria eksperymentów, znana pod kryptonimem Argus, w rejonie anomalii południowoatlantyckiej, została przeprowadzona w dniach 27 i 30 sierpnia oraz 6 września 1958 roku.
Do wyniesienia głowic W-25 o ekwiwalencie 1,7 kt TNT użyto rakiet Lockheed X-17, wystrzeliwanych z okrętu USS Norton Sound. Osiągnęły one wysokość odpowiednio 170 km, 310 km i 794 km. W celu uzyskania danych z testów na dużych wysokościach podjęto próbę wystrzelenia dwóch satelitów. Explorer 4 został pomyślnie wyniesiony na orbitę 26 lipca 1958 r. za pomocą rakiety Juno I z przylądka Canaveral. 24 sierpnia 1958 r. bliźniaczy Explorer 5 doświadczył niepowodzenia podczas startu. Oprócz satelitów stworzono sieć złożoną z wielu systemów śledzenia, wojskowych, akademickich i przemysłowych. Chociaż Argus potwierdził efekt Christofilosa, to jednak ze wzglądu na małą moc użytych ładunków, utrzymywał się on jedynie przez kilka tygodni, po czym zanikł.
Trzecia i ostatnia seria eksperymentów otrzymała nazwę kodową Dominic I. Obejmowała ona eksplozje podwodne, nadwodne, podziemne, atmosferyczne oraz interesujące nas – kosmiczne. Te realizowane były w ramach podprogramu Operation Fishbowl. Wykorzystano rakietę PGM-17 Thor – rakietę balistyczną średniego zasięgu (IRBM), a miejscem startu ponownie był atol Johnstona.
Testy wykonano pomiędzy 3 czerwca a 4 listopada 1962 roku. W ramach testów podjęto łącznie dziewięć prób wyniesienia różnych głowic na różne wysokości, ale aż cztery z nich zakończyły się niepowodzeniem startu i zniszczeniem rakiety wraz z ładunkiem, w tym jedna bezpośrednio na wyrzutni.
Zobacz więcej materiałów w pełnym wydaniu artykułu w wersji elektronicznej >>
Pełna wersja artykułu
Pełna wersja artykułu
Pełna wersja artykułu