Koncepcja obrony przeciwrakietowej rozwijana była przez Stany Zjednoczone od przełomu lat 50. i 60. ubiegłego wieku, w związku z pojawieniem się broni rakietowej i zaistnieniem potencjalnego zagrożenia ze strony ZSRR. W jej ramach rozwijano projekt Nike-Zeus oraz dołączano sukcesywnie programy Defender, Sentinel i Safeguard. Podstawowymi założeniami systemu były zestawy przeciwrakiet rozmieszczonych na wyrzutniach naziemnych, mogących zestrzelić nadlatujące pociski przeciwnika z dużej odległości, poza atmosferą ziemi lub w przypadku zmasowanego ataku (po przeniknięciu rakiet z głowicami atomowymi poza pierwszą linię obrony w przestrzeni kosmicznej) także w stratosferze – za pomocą ściany ognia stworzonej przez szereg wybuchów ładunków jądrowych wystrzeliwanych we własnych rakietach.
W projekcie SDI system naziemnej obrony przeciwrakietowej rozszerzono o wyrzutnie rakiet i platformy z działami laserowymi, znajdujące się w przestrzeni kosmicznej, aby zminimalizować czas identyfikacji i zniszczenia wrogich obiektów oraz zapobiec potencjalnemu skażeniu promieniotwórczemu ziemi i atmosfery. W założeniach zniszczenie wrogich rakiet w pierwszym etapie następowałoby tuż po odpaleniu pocisku przez nieprzyjaciela, ponad jego terytorium i miało się obrócić przeciwko atakującemu, gdyż opad promieniotwórczy skaziłby terytorium wroga. Budowa systemu Strategic Defense Initiative miała trwać 17 lat do roku 2000 i kosztować 125 miliardów USD. SDI była najszerzej zakrojonym projektem ze wszystkich kiedykolwiek podejmowanych amerykańskich programów obrony przeciwrakietowej i jedynym, w którego założeniach znajdowało się wykorzystanie broni rozmieszczonej w przestrzeni kosmicznej.
W 1984 r. w celu nadzorowania programu utworzono w strukturze Departamentu Obrony SDIO (Strategic Defense Initiative Organization), której przewodniczył generał broni James Abrahamson z USAF, były dyrektor programu promu kosmicznego NASA. Od samego początku do programu zaprzęgnięto najlepsze ośrodki naukowe, technologiczne i komputerowe Stanów Zjednoczonych. Należało przebadać szeroką gamę zaawansowanych koncepcji broni, w tym różne rodzaje laserów, broń opartą o emisję wiązki cząstek oraz naziemne i kosmiczne systemy rakietowe, różne systemy czujników, dowodzenia i kontroli oraz wysokowydajne systemy komputerowe, które byłyby potrzebne do kontrolowania systemu składającego się z setek ośrodków bojowych i satelitów rozmieszczonych na całym świecie i biorących udział w bardzo krótkiej bitwie.
Wiele z tych koncepcji nieźle wyglądało na papierze, jednak należało ich elementy przetestować w miejscu zastosowania, czyli na orbicie. Niektóre, takie jak lasery naziemne, odpadły w przedbiegach – już w roku 1985 okazało się, że moc niezbędna do ich uruchomienia przekraczała o dwa do trzech rzędów wielkości ówczesne możliwości. Z kolei orbitalny laser rentgenowski zaproponowany przez Edwarda Tellera (Projekt Excalibur), nie przeszedł kilku kluczowych testów naziemnych w 1986 r. i w praktyce mógł być wykorzystany wyłącznie w roli antysatelity. Wykazano też, że koncepcja działa strzelającego wiązką cząstek nie działa wystarczająco dobrze. Projekty upadały jeden po drugim, wydawało się, że jedynie laser orbitalny, czy raczej flota takich laserów ma szansę na spełnienie oczekiwań.
W 1987 r. Amerykańskie Towarzystwo Fizyczne (American Physical Society) stwierdziło, że rozważane technologie dzielą dziesięciolecia od gotowości do użycia i potrzeba co najmniej kolejnej dekady badań, aby dowiedzieć się, czy taki system jest w ogóle możliwy. Po publikacji raportu APS budżet SDI był wielokrotnie obcinany. Pod koniec lat 80. wysiłki skupiono na koncepcji Brilliant Pebbles, opracowanej w Lawrence Livermore National Laboratory, wykorzystującej szereg małych rakiet krążących na orbicie, podobnych do konwencjonalnych rakiet powietrze-powietrze, których opracowanie i rozmieszczenie miało być znacznie tańsze i przede wszystkim możliwe do realizacji. Wyposażone one były w głowice kinetyczne.
Podstawową niedogodnością projektu była ilość rakiet, którą trzeba by wynieść, by system był efektywny. Otóż konstelacja ta miała wynieść 1600 jednostek, a biorąc pod uwagę ówczesne możliwości rakiet nośnych, wymagałaby takiej samej liczby startów! Niemniej jednak technologia śledzenia użyta w projekcie, znana pod nazwą Brilliant Eyes, została później wykorzystana jako komponent systemu śledzenia przestrzeni kosmicznej i rakiet SBIRS (Space-Based Infra-Red System).
Pomimo olbrzymich problemów naukowcy i inżynierowie nie ustawali w wysiłkach by dowieść, że poszczególne systemy mogą – bądź nie – spełniać założenia programu. Oprócz niezliczonych testów naziemnych, część z nich przeprowadzono na orbicie. Pierwsza orbitalna misja w ramach SDI rozpoczęta została 5 września 1986 r. startem rakiety Delta z Cape Canaveral. Mimo, że była to niezwykle złożona misja, która kosztowała 150 mld USD, trwała tylko 205 minut. Nosiła nazwę VSE (Vector Sum Experiment), a jej celami było zbierać optyczne dane widmowe ze źródeł napędu rakietowego i potwierdzić algorytmy prowadzenia i nawigacji do przechwytywania. Wiązało się to z umieszczeniem drugiego stopnia Delty i systemu wspomagania ładunku PAS na dwóch synchronicznych w czasie orbitach o wysokości 220 km i nieco różnych nachyleniach.
Z początkowej orbity wypuszczono główny ładunek, zamontowany na platformie PAS (Payload Assist System), napędzanej silnikiem TR-201. Wyposażony był on w zaawansowane czujniki podczerwieni i ultrafioletowe oraz montowany na maszcie lidar i radar poszukiwawczy Phoenix AIM-54C+. Ładunek zbliżył się na odległość 200 km od celu (drugiego stopnia) i wykonywał różne manewry. Po 92 minutach czujniki podczerwieni zarejestrowały wystrzelenie rakiety Aries z poligonu White Sands w Nowym Meksyku. Wreszcie po 205 minutach satelita został doprowadzony do czołowego zderzenia z drugim stopniem. Z bazy Kwajalein na Pacyfiku zaobserwowano uderzenie i błysk ładunku samozniszczenia, który miał zapewnić całkowite unicestwienie tajnych instrumentów. Sam drugi stopień Delty został wyposażony w szereg czujników skierowanych do przodu, służących do oceny smug odrzutu głównego ładunku, oraz w czujniki skierowane do tyłu, umożliwiające ocenę własnej smugi.
Jako druga, 8 lutego 1988 r., wystartowała misja TVE (Thrusted Vector Experiment). Ponownie użyto rakiety Delta startującej z Florydy. TVE obejmował rozmieszczenie dwóch ładunków jako obiektu do przeprowadzenia serii eksperymentów na orbicie. Jednym z nich był SPV, pakiet generatora smugi z silnikiem Star-13A, a drugim pakiet naukowy zawierający osiem obiektów testowych i cztery obiekty referencyjne. Moduł czujnika, składający się z systemu dowodzenia i przetwarzania danych oraz siedmiu eksperymentów naukowych, pozostał w drugim stopniu Delty w celu skanowania elementów obu pakietów po ich uruchomieniu.
Moduł czujnika został wyposażony w sensory ultrafioletu, podczerwieni, radaru i lasera, aby zebrać ogromną ilość danych na temat sygnatur generowanych przez rozmieszczone ładunki. Dane te przesyłano za pośrednictwem dwóch szerokopasmowych łączy telemetrycznych do stacji naziemnych. Dane z około stu źródeł naziemnych przetransmitowano na przylądek Canaveral za pośrednictwem satelitów komunikacyjnych. Misja wymagała ponad 200 manewrów śledzenia radarowego w ciągu dwóch dni, a zarejestrowane dane napływały przez około dziesięć dni po zakończeniu eksperymentalnej części misji. Była to jedna z najbardziej złożonych misji w historii.
Zobacz więcej materiałów w pełnym wydaniu artykułu w wersji elektronicznej >>
Pełna wersja artykułu
Pełna wersja artykułu
Pełna wersja artykułu
Pełna wersja artykułu
Pełna wersja artykułu