Dotknąć Słońce. Sonda Parker Solar Probe

  • Lotnictwo Aviation International 5/2018
Obserwacja Słonca.

Obserwacja Słonca.

W końcu lat sześć­dzie­sią­tych ubie­głego wieku, gdy już było pra­wie pewne, że to Amerykanie, a nie Sowieci zwy­ciężą w wyścigu na Księżyc, popu­larny nie tylko w naszym kraju stał się dow­cip, w któ­rym astro­nauta i kosmo­nauta licy­to­wali się w osią­ga­niu okre­ślo­nych celów. W odpo­wie­dzi na ame­ry­kań­ską pro­po­zy­cję lotu na Księżyc, Rosjanin prze­bija kon­ku­renta rze­ko­mym zamia­rem lotu na Słońce – oczy­wi­ście w nocy, gdyż w dzień jest tam za gorąco. Tyle aneg­dota, ale czy rze­czy­wi­ście tak cał­ko­wi­cie absur­dalna? Otóż nie, jeśli wszystko pój­dzie zgod­nie z pla­nem, to 31 lipca NASA roz­pocz­nie misję sondy Parker Solar Probe, która kil­ka­krot­nie prze­leci przez naj­go­ręt­szą część atmos­fery naszej gwiazdy dzien­nej.

Słońce jest gwiazdą o śred­nicy około 1,393 miliona kilo­me­trów (109 razy więk­szej od ziem­skiej) i masie więk­szej od ziem­skiej aż o 333 tysiące razy (1,989×1030 kg), co sta­nowi 99,86% masy wszyst­kich ciał Układu Słonecznego. Jest to żółty karzeł, typowa gwiazda ciągu głów­nego ewo­lu­cji, któ­rej wiek wynosi 4,57 miliarda lat, a zatem jest jesz­cze przed osią­gnię­ciem połowy swego ist­nie­nia w tej postaci. Składa się głów­nie z wodoru (73,46%) i helu (24,85%) oraz nie­wiel­kich ilo­ści tlenu, węgla, żelaza i innych pier­wiast­ków. Nie należy jed­nak sobie wyobra­żać, że są to pier­wiastki w zna­nej nam z Ziemi postaci – gazo­wej, czy tym bar­dziej sta­łej. Ze względu na zacho­dzące wewnątrz gwiazdy pro­cesy syn­tezy ter­mo­ją­dro­wej, jest to pra­wie wyłącz­nie pla­zma, a zatem zjo­ni­zo­wany gaz.
Czas obrotu Słońca dookoła osi jest nie­jed­no­rodny, wynosi od 25,05 doby na rów­niku, do 34,4 doby na bie­gu­nach. Temperatura w jądrze Słońca prze­kra­cza 15 milio­nów kel­wi­nów, na powierzchni Słońca, a za taką uwa­żamy zewnętrzną war­stwę fotos­fery, wynosi 5778 K (5505 °C). A co ze sło­neczną atmos­ferą? Owszem, ist­nieje, co wię­cej jest sto­sun­kowo słabo zba­dana, a zwłasz­cza mecha­ni­zmy, powo­du­jące roz­grze­wa­nie nie­któ­rych jej warstw (zwłasz­cza korony) do jed­nego-dwóch, a spo­ra­dycz­nie nawet 8 – 20 milio­nów kel­wi­nów – oczy­wi­ście przy zni­ko­mej gęsto­ści. To wła­śnie korona sło­neczna będzie głów­nym przed­mio­tem badań sondy Parker.

Wcześniejsze bada­nia kosmiczne Słońca

Pierwszymi obiek­tami kosmicz­nymi prze­zna­czo­nymi do obser­wa­cji Słońca były ame­ry­kań­skie sondy pro­gramu Pioneer. Oznaczone nume­rami 5, 6, 7, 8 i 9 zostały umiesz­czone w latach 1960 – 1968 na orbi­tach helio­cen­trycz­nych. Krążyły wokół Słońca w odle­gło­ści podob­nej do Ziemi, wyko­nu­jąc pierw­sze szcze­gó­łowe pomiary wia­tru sło­necz­nego i pola magne­tycz­nego. Niektóre z nich dzia­łały bar­dzo długo, np. Pioneer-6 jesz­cze w 2000 r., po 35 latach spę­dzo­nych na orbi­cie, był w sta­nie prze­ka­zy­wać wyniki nie­któ­rych pomia­rów.
Wielkim suk­ce­sem oka­zały się wystrze­lone w latach 1974 i 1976 sondy Helios 1 i 2. Zbudowane w koope­ra­cji nie­miecko-ame­ry­kań­skiej obiekty przy­nio­sły istotne nowe dane na temat wia­tru sło­necz­nego i korony sło­necz­nej. Peryhelium orbity pierw­szej wyno­siło 0,309 jed­nostki astro­no­micz­nej (*), czyli 46,2 milio­nów km, dru­giej zaś zale­d­wie 0,28 AU (41,9 mln km). Choć ich powierzch­nie pokryte były w poło­wie ogni­wami foto­wol­ta­icz­nymi, a w dru­giej radia­to­rami, obie sondy bory­kały się w mniej­szym lub więk­szym stop­niu z prze­grze­wa­niem apa­ra­tury, spo­wo­do­wa­nej potęż­nym stru­mie­niem ener­gii cie­plej, pły­ną­cej z naszej gwiazdy dzien­nej. Słońce obser­wo­wano nie tylko z orbit helio­cen­trycz­nych, lecz także z sate­li­tów krą­żą­cych wokół Ziemi.
Stacja kosmiczna Skylab (start w 1973 r.), posia­dała obser­wa­to­rium sło­neczne ATM, które dostar­czyło infor­ma­cji o war­stwie przej­ścio­wej atmos­fery sło­necz­nej i zare­je­stro­wało emi­sje ultra­fio­le­towe z korony. Do naj­waż­niej­szych odkryć ATM należą pierw­sze obser­wa­cje koro­nal­nych wyrzu­tów masy (CME – coro­nal mass ejec­tion) oraz dziur koro­nal­nych, o któ­rych wia­domo obec­nie, że są ści­śle zwią­zane z wia­trem sło­necz­nym. W 1980 r. wysłano sate­litę Solar Maximum Mission. Została ona zapro­jek­to­wana do obser­wa­cji pro­mieni gamma, rent­ge­now­skich i ultra­fio­le­to­wych pocho­dzą­cych z roz­bły­sków sło­necz­nych w cza­sie wyso­kiej aktyw­no­ści sło­necz­nej. Wykonała ona około 240 tys. zdjęć korony sło­necz­nej. Wystrzelony w 1991 r. japoń­ski sate­lita Yohkoh obser­wo­wał roz­bły­ski w paśmie rent­ge­now­skim. Dane misji pozwo­liły naukow­com ziden­ty­fi­ko­wać kilka róż­nych typów roz­bły­sków i wyka­zać, że korona z dala od obsza­rów naj­więk­szej aktyw­no­ści jest znacz­nie bar­dziej dyna­miczna, niż wcze­śniej przy­pusz­czano.
Jedną z naj­waż­niej­szych misji sło­necz­nych do tej pory była SOHO (Solar and Heliospheric Observatory), roz­po­częta w 1995 roku. Pierwotnie pla­no­wana na dwa lata, została prze­dłu­żona aż do 2012 r., a następ­nie do 2016. Sonda zbu­do­wana wspól­nie przez Europejską Agencję Kosmiczną (ESA) i NASA została umiesz­czona w punk­cie rów­no­wagi gra­wi­ta­cyj­nej L1 pomię­dzy Ziemią a Słońcem, w sta­łej odle­gło­ści od Ziemi i syn­chro­nicz­nie z nią obiega Słońce. SOHO zapew­niła stałe moni­to­ro­wa­nie Słońca w wielu dłu­go­ściach fal. Obserwatorium SOHO oka­zało się tak uży­teczne, że w lutym 2010 r. wysłano sondę Solar Dynamics Observatory (SDO) w celu kon­ty­nu­owa­nia jego misji. Wszystkie te sondy obser­wo­wały Słońce z płasz­czy­zny eklip­tyki (płasz­czy­zny orbity Ziemi), co pozwala na szcze­gó­łowe obser­wa­cje tylko w oko­licy rów­ni­ko­wej.

  • Waldemar Zwierzchlejski

To jest skrócona wersja artykułu.

CZYTAJ E-WYDANIE KUP WYDANIE PAPIEROWE